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Question

Question

How does the class group Cl(K) change when the number field K
changes under the field extension?

The question is too wild to have a uniform answer. There are multiple
methods to study such questions:

Iwasawa theory

Galois cohomology

· · ·
In the talk, we will compare these two methods.
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Iwasawa theory

Iwasawa’s answer to the question: Instead of looking at one field
extension, we look at a tower of field extensions.

Definition

We call a tower of fields extension K ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kl ⊂ · · · ⊂ K∞
a Zp extension of number field K if Gal(Kl/K) ∼= Z/plZ and
Gal(K∞/K) ∼= Zp.
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Iwasawa theory

Example

Let µn be the group of n-th root of units.

Gal(Q(µpl+1)/Q) ∼= (Z/pl+1Z)∗ ∼= Z/plZ⊕ Z/(p− 1)Z.
There is a unique subfield Ql ⊂ Q(µpl+1) such that

Gal(Ql/Q) ∼= Z/plZ.
Q ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Ql ⊂ · · · ⊂ Q∞ = ∪lQl is a Zp field extension
of Q.

Generally, by compositing the above tower with number field K, we
get a Zp extension for K:
K = KQ1 = · · · = KQe ⊂ KQe+1 ⊂ KQe+2 · · · ⊂ KQ∞

We call such Zp extension as cyclotomic Zp extension.
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Iwasawa theory

Let K ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kl ⊂ · · · ⊂ K∞ be a Zp extension of number
field K.

Theorem (Iwasawa[Was97])

There are constants µ, λ, ν such that when n is sufficient large,

#Cl(OKl
)[p∞] = pµp

l+λl+ν

Therefore people are interested in computing the three constants µ, λ, ν

Theorem (Ferrero-Washington[Was97])

When K is an abelian number field, then µ is 0 for the cyclotomic Zp

extension.
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Iwasawa theory

Theorem (Ferrero-Washington[Was97])

When K is an abelian number field, then µ is 0 for the cyclotomic Zp

extension.

Conjecture (Iwasawa[Was97])

The Iwasawa µ is zero for the cyclotomic Zp extension of any number field
K

So, the interesting part is to calculate invariant λ.
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some Galois cohomology

S is the set of primes above p in K

KS is the maximal field extension of K unramified outside S and
infinite primes.

GK,S := Gal(KS/K)

Fact: K ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kl ⊂ · · · ⊂ K∞ ⊂ KS for any Zp extension.

χ : GK,S → Gal(K∞/K) ∼= Zp is an element in
Hom(GK,S ,Zp)∼= H1(GK,S ,Zp)

Let α ∈ K∗, we can also view α as an element in cohomology group
H1(GK,S , µp) by kummer theory
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McCallum-Sharifi’s result

Recall µn is the group of n-th root of units.

Let K = Q(µp).

K = Q(µp) ⊂ Q(µp2) ⊂ · · · ⊂ Q(µpl) ⊂ · · · ⊂ Q(µp∞) is a
cyclotomic Zp extension.

Gal(Q(µp)/Q) can act on Cl(Q(µpl))[p
∞].

Decompose Cl(Q(µpl))[p
∞] = ⊕iεiCl(Q(µpl))[p

∞] as direct sum of
eigenspaces with respect to the action of Gal(Q(µp)).

By Iwasawa theory

#εiCl(Q(µpl))[p
∞] = pµip

l+λil+νi = pλil+νi
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McCallum-Sharifi’s result

Recall µn is the group of n-th root of units.

Theorem (McCallum-Sharifi[MS03])

Let K = Q(µp)

K = Q(µp) ⊂ Q(µp2) ⊂ · · · ⊂ Q(µpl) ⊂ · · · ⊂ Q(µp∞) is a
cyclotomic Zp extension

Fix an odd i > 1. Under some conditions,

λi ≥ 2⇐⇒ χ ∪ αi = 0

Where αi is an element K∗ constructed from εiCl(K)[p]
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Gold’s criterion

Theorem (Gold’s criterion[Gol74])

Let K be an imaginary quadratic field and K∞/K is the cyclotomic
Zp extension.

Assume p ∤ hK = #Cl(K) and p splits in K ,i.e. pOK = P0P̃0

Then
λ ≥ 2⇐⇒ αp−1 ≡ 1 mod P̃2

0

Here α is a generator of PhK
0
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Gold’s criterion

The same setting up as before, Gold tells us:

λ ≥ 2⇐⇒ αp−1 ≡ 1 mod P̃2
0

By some work, easy to see:

αp−1 ≡ 1 mod P̃2
0 ⇐⇒ logpα ≡ 0 mod p2

Here logp is the p-adic log.
If we work harder, by Poitou-Tate duality

logpα ≡ 0 mod p2 ⇐⇒ χ ∪ α = 0
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Comparing

Theorem (McCallum-Sharifi[MS03])

Let K be a cyclotomic field Q(µp). For cyclotomic Zp extensions, under
some conditions:

λi ≥ 2⇐⇒ χ ∪ αi = 0

for odd i > 1.

Theorem (Gold’s criterion[Gol74])

Let K be an imaginary quadratic field. For cyclotomic Zp extensions,
under some conditions:

λ ≥ 2⇐⇒ χ ∪ α = 0

Remark

Both theorems has the form ”λ ≥ 2⇐⇒ χ ∪ α = 0 ”, which motivates us
to find the deep reason behind it.
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Massey products

Slogan

Massey product is a generalization of cup products.

Given χ1, χ2 ∈ H1(G,Fp) ∼= Hom(G,Fp), we can form two
representations G→ GL2(Fp):

ρχ1(g) =

(
1 χ1(g)
0 1

)
, ρχ2(g) =

(
1 χ2g
0 1

)

Try to glue the two representations together:1 χ1 ∗
0 1 χ2

0 0 1


We want to fill ∗ spot a cochain ϕ ∈ C1(G,Fp) such that the above is
a representation.
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Massey products

We want to fill ∗ spot a cochain ϕ ∈ C1(G,Fp) such that the above is
a representation.

1 χ1(σ) ϕ(σ)
0 1 χ2(σ)
0 0 1

∗
1 χ1(τ) ϕ(τ)
0 1 χ2(τ)
0 0 1

 =

1 χ1(στ) ϕ(στ)
0 1 χ2(στ)
0 0 1


for any σ, τ ∈ G.

χ1(σ)χ2(τ) = ϕ(στ)− χ1(σ)− χ2(τ) = dϕ(σ, τ)

We can fill ∗ spot a cochain ϕ ∈ C1(G,Fp) s.t. the above is a
representation ⇐⇒ χ1 ∪ χ2 = −dϕ in C.(G,Fp) ⇐⇒ χ1 ∪ χ2 = 0 in
H2(G,Fp).
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Cup product χ1 ∪ χ2 is the obstruction for us to glue.

Generally if we have a bunch of representations derived from elements
in H1(G,Fp) and they are compatible in a certain way, Massey
products are the obstruction for us to glue them.
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3-fold Massey products

Generally if we have a bunch of representations derived from elements
in H1(G,Fp) and they are compatible in a certain way, Massey
products are the obstruction for us to glue them.

Given two 3-dimensional representations G→ GL3(Fp)1 χ1 ϕ1,2
0 1 χ2

0 0 1

 ,

1 χ2 ϕ2,3
0 1 χ3

0 0 1


We want to glue them together:

1 χ1 ϕ1,2 ∗
0 1 χ2 ϕ2,3
0 0 1 χ3

0 0 0 1


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1 χ1 ϕ1,2 ∗
0 1 χ2 ϕ2,3
0 0 1 χ3

0 0 0 1
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χ1 ∪ ϕ2,3 + ϕ1,2 ∪ χ3 ∈ H2(G,Fp) is the obstruction to glue them.

The data M = {χ1, χ2, χ3, ϕ1,2, ϕ2,3} are called defining system.

χ1 ∪ ϕ2,3 + ϕ1,2 ∪ χ3 ∈ H2(G,Fp) is the Massey products of
(χ1, χ2, chi3) with respect to the defining system M .
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proper defining system

A defining system is called proper defining system if it is of the following
form: 

1 χ
(
χ
2

) (
χ
3

) (
χ
4

)
· · · ∗

0 1 χ
(
χ
2

) (
χ
3

)
· · · ψn−1

...
...

...
...

...
. . .

...
0 0 0 1 χ

(
χ
2

)
ψ2

0 0 0 0 1 χ ψ1

0 0 0 0 0 1 ψ0

0 0 0 0 0 0 1


Here

(
n
d

)
= n!

d!(n−d)! .
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Massey products and knots

There is an analogy between knots and primes in which H∗(GK,S ,Fp)
plays a similar role as the cohomology of knot complements. Massey
products were first introduced by Massey when considering the following
knots. Cup products (i.e. linking numbers in knot theory) of any two rings
are all zero. Hence cup products fail to determine whether the following
knots are trivial. However, the triple Massey product of three rings is not
zero, which tells us three rings are linked in a nontrivial way.

Figure: Borromean RingsPeikai Qi (MSU) Iwasawa λ invaraints and Massey products November 6, 2023 23 / 32
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Generalized Bockstein Map

GK,S/GK∞,S
∼= Gal(K∞/K) ∼= Zp

Let σ be a topological generator of GK,S/GK∞,S .

Define the complete algebra Ω := Fp[[GK,S/GK∞,S ]]

Let I =< σ − 1 > be the augmentation ideal.

we have an exact sequence :

0→ Fp
∼= In/In+1 → Ω/In+1 → Ω/In → 0

After tensor with µp, it is still exact.

0→ µp ∼= µp ⊗ In/In+1 → µp ⊗ Ω/In+1 → µp ⊗ Ω/In → 0

Peikai Qi (MSU) Iwasawa λ invaraints and Massey products November 6, 2023 25 / 32



Generalized Bockstein Map

After tensor with µp, it is still exact.

0→ µp ∼= µp ⊗ In/In+1 → µp ⊗ Ω/In+1 → µp ⊗ Ω/In → 0

The connecting map Ψ(n) : H1(GK,S , µp ⊗ Ω/In)→
H2(GK,S , µp ⊗ In/In+1) = H2(GK,S , µp) is called
the generalized Bockstein map.
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Main result

Theorem (Q.)

Let K ⊂ K1 ⊂ K2 ⊂ · · · ⊂ K∞ be a Zp extension of K

Let S be the set of primes above p for K

K∞/K is totally ramified for all primes in S.

Let Xcs = lim←−ClS(Kl) and µcs, λcs be the Iwasawa invariant of Xcs.

Assume Xcs has no torsion element and H2(GK,S , µp) ∼= Fp.

Then µcs = 0 if and only if there exists k such that Ψ(k) ̸= 0 for some k.
If µcs = 0, then λcs = min{n|Ψ(n) ̸= 0} −#S + 1
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Applying to the same case as Gold’s criterion

Corollary (Q.)

Let K be an imaginary quadratic field and K∞/K is the cyclotomic
Zp extension.

Assume p ∤ hK = #Cl(K) and p splits in K ,i.e. pOK = P0P̃0.

Assume λ ≥ n− 1

Then λ ≥ n⇔ n-fold Massey product (χ, χ, · · ·χ, α) = 0 with
respect to a proper defining system. Here α is a generator of PhK

0
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Applying to the same case as McCallum-Sharifi’s result

Corollary (Q.)

Let K = Q(µp)

K = Q(µp) ⊂ Q(µp2) ⊂ · · · ⊂ Q(µpl) ⊂ · · · ⊂ Q(µp∞) is a
cyclotomic Zp extension

Fix an odd i > 1. Under some conditions, assume λi ≥ n− 1. Then
λi ≥ n⇔ n-fold Massey product εi(χ, χ, · · ·χ, αi) = 0 with respect
to a proper defining system, where αi is an element K∗ constructed
from εiCl(K)[p]
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Idea of proof

Use Kummer theory to connect the size of class groups and
cohomological groups.

0→ O∗
K,S/(O∗

K,S)
p → H1(GK,S , µp)→ ClS(K)[p]→ 0

0→ ClS(K)/p→ H2(GK,S , µp)→ Br(OK [1/p])[p]→ 0

The size of cohomological groups is controlled by generalized
Bockstein map [LLS+23].

InH2
Iw(GK∞,S , µp)

In+1H2
Iw(GK∞,S , µp)

∼=
H2(GK,S , µp)⊗ In/In+1

ImΨ(n)

here Ψ(n) is the generalized Bockstein map.

Under some conditions, the image of generalized Bockstein map is
spanned by Massey products[LLS+23].
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THANK YOU!
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