Iwasawa λ invaraints and Massey products

Peikai Qi

Michigan State University

Peikai Qi (MSU) **IWasawa λ** [invaraints and Massey products](#page-72-0) November 6, 2023 1/32

[Introduction](#page-2-0)

2 Cup products and λ [invariants—two sample results](#page-18-0)

3 [Massey products](#page-39-0)

4 [Generalized Bockstein Map](#page-58-0)

[Main Results](#page-61-0)

 \blacksquare

∍

[Introduction](#page-2-0)

Cup products and λ [invariants—two sample results](#page-18-0)

[Massey products](#page-39-0)

4 [Generalized Bockstein Map](#page-58-0)

[Main Results](#page-61-0)

 \leftarrow \Box

Þ

How does the class group $Cl(K)$ change when the number field K changes under the field extension?

 \leftarrow \Box

Þ

How does the class group $Cl(K)$ change when the number field K changes under the field extension?

The question is too wild to have a uniform answer.

How does the class group $Cl(K)$ change when the number field K changes under the field extension?

The question is too wild to have a uniform answer. There are multiple methods to study such questions:

• Iwasawa theory

How does the class group $Cl(K)$ change when the number field K changes under the field extension?

The question is too wild to have a uniform answer. There are multiple methods to study such questions:

- Iwasawa theory
- **•** Galois cohomology

How does the class group $Cl(K)$ change when the number field K changes under the field extension?

The question is too wild to have a uniform answer. There are multiple methods to study such questions:

- **•** Iwasawa theory
- **•** Galois cohomology
- \bullet \cdot \cdot \cdot

How does the class group $Cl(K)$ change when the number field K changes under the field extension?

The question is too wild to have a uniform answer. There are multiple methods to study such questions:

- Iwasawa theory
- **•** Galois cohomology
- \bullet \cdot \cdot \cdot

In the talk, we will compare these two methods.

Iwasawa's answer to the question: Instead of looking at one field extension, we look at a tower of field extensions.

Definition

We call a tower of fields extension $K \subset K_1 \subset K_2 \subset \cdots \subset K_l \subset \cdots \subset K_{\infty}$ a \mathbb{Z}_p extension of number field K if $\mathrm{Gal}(K_l/K) \cong \mathbb{Z}/p^l\mathbb{Z}$ and $Gal(K_{\infty}/K) \cong \mathbb{Z}_p$.

• Let μ_n be the group of *n*-th root of units.

€⊡

э

- Let μ_n be the group of *n*-th root of units.
- $Gal(\mathbb{Q}(\mu_{p^{l+1}})/\mathbb{Q}) \cong (\mathbb{Z}/p^{l+1}\mathbb{Z})^* \cong \mathbb{Z}/p^l\mathbb{Z} \oplus \mathbb{Z}/(p-1)\mathbb{Z}.$

 \blacksquare

э

- Let μ_n be the group of *n*-th root of units.
- $Gal(\mathbb{Q}(\mu_{p^{l+1}})/\mathbb{Q}) \cong (\mathbb{Z}/p^{l+1}\mathbb{Z})^* \cong \mathbb{Z}/p^l\mathbb{Z} \oplus \mathbb{Z}/(p-1)\mathbb{Z}.$
- There is a unique subfield $\mathbb{Q}_l\subset \mathbb{Q}(\mu_{p^{l+1}})$ such that $Gal(\mathbb{Q}_l/\mathbb{Q}) \cong \mathbb{Z}/p^l\mathbb{Z}.$

- Let μ_n be the group of *n*-th root of units.
- $Gal(\mathbb{Q}(\mu_{p^{l+1}})/\mathbb{Q}) \cong (\mathbb{Z}/p^{l+1}\mathbb{Z})^* \cong \mathbb{Z}/p^l\mathbb{Z} \oplus \mathbb{Z}/(p-1)\mathbb{Z}.$
- There is a unique subfield $\mathbb{Q}_l\subset \mathbb{Q}(\mu_{p^{l+1}})$ such that $Gal(\mathbb{Q}_l/\mathbb{Q}) \cong \mathbb{Z}/p^l\mathbb{Z}.$
- $\mathbb{Q}\subset \mathbb{Q}_1\subset \mathbb{Q}_2\subset \cdots \subset \mathbb{Q}_l\subset \cdots \subset \mathbb{Q}_\infty=\cup_l \mathbb{Q}_l$ is a \mathbb{Z}_p field extension of \mathbb{Q} .

- Let μ_n be the group of *n*-th root of units.
- $Gal(\mathbb{Q}(\mu_{p^{l+1}})/\mathbb{Q}) \cong (\mathbb{Z}/p^{l+1}\mathbb{Z})^* \cong \mathbb{Z}/p^l\mathbb{Z} \oplus \mathbb{Z}/(p-1)\mathbb{Z}.$
- There is a unique subfield $\mathbb{Q}_l\subset \mathbb{Q}(\mu_{p^{l+1}})$ such that $Gal(\mathbb{O}_l/\mathbb{O}) \cong \mathbb{Z}/p^l\mathbb{Z}.$
- $\mathbb{Q}\subset \mathbb{Q}_1\subset \mathbb{Q}_2\subset \cdots \subset \mathbb{Q}_l\subset \cdots \subset \mathbb{Q}_\infty=\cup_l \mathbb{Q}_l$ is a \mathbb{Z}_p field extension of Q.
- Generally, by compositing the above tower with number field K , we get a \mathbb{Z}_p extension for K: $K = K\mathbb{Q}_1 = \cdots = K\mathbb{Q}_e \subset K\mathbb{Q}_{e+1} \subset K\mathbb{Q}_{e+2} \cdots \subset K\mathbb{Q}_{\infty}$

- Let μ_n be the group of *n*-th root of units.
- $Gal(\mathbb{Q}(\mu_{p^{l+1}})/\mathbb{Q}) \cong (\mathbb{Z}/p^{l+1}\mathbb{Z})^* \cong \mathbb{Z}/p^l\mathbb{Z} \oplus \mathbb{Z}/(p-1)\mathbb{Z}.$
- There is a unique subfield $\mathbb{Q}_l\subset \mathbb{Q}(\mu_{p^{l+1}})$ such that $Gal(\mathbb{O}_l/\mathbb{O}) \cong \mathbb{Z}/p^l\mathbb{Z}.$
- $\mathbb{Q}\subset \mathbb{Q}_1\subset \mathbb{Q}_2\subset \cdots \subset \mathbb{Q}_l\subset \cdots \subset \mathbb{Q}_\infty=\cup_l \mathbb{Q}_l$ is a \mathbb{Z}_p field extension of Q.
- Generally, by compositing the above tower with number field K , we get a \mathbb{Z}_p extension for K: $K = K\mathbb{Q}_1 = \cdots = K\mathbb{Q}_e \subset K\mathbb{Q}_{e+1} \subset K\mathbb{Q}_{e+2} \cdots \subset K\mathbb{Q}_{\infty}$
- We call such \mathbb{Z}_n extension as cyclotomic \mathbb{Z}_n extension.

Let $K \subset K_1 \subset K_2 \subset \cdots \subset K_l \subset \cdots \subset K_{\infty}$ be a \mathbb{Z}_n extension of number field K .

Theorem (Iwasawa[\[Was97\]](#page-75-0))

There are constants μ , λ , ν such that when n is sufficient large,

$$
\#\mathrm{Cl}(\mathcal{O}_{K_l})[p^{\infty}] = p^{\mu p^l + \lambda l + \nu}
$$

Therefore people are interested in computing the three constants μ, λ, ν

Theorem (Ferrero-Washington[\[Was97\]](#page-75-0))

When K is an abelian number field, then μ is 0 for the cyclotomic \mathbb{Z}_n extension.

Theorem (Ferrero-Washington[\[Was97\]](#page-75-0))

When K is an abelian number field, then μ is 0 for the cyclotomic \mathbb{Z}_n extension.

Conjecture (Iwasawa[\[Was97\]](#page-75-0))

The Iwasawa μ is zero for the cyclotomic \mathbb{Z}_p extension of any number field K

So, the interesting part is to calculate invariant λ .

[Introduction](#page-2-0)

2 Cup products and λ [invariants—two sample results](#page-18-0)

[Massey products](#page-39-0)

4 [Generalized Bockstein Map](#page-58-0)

[Main Results](#page-61-0)

€⊡

Þ

- \bullet S is the set of primes above p in K
- K_S is the maximal field extension of K unramified outside S and infinite primes.
- G_K := Gal(K_S/K)
- \bullet S is the set of primes above p in K
- K_S is the maximal field extension of K unramified outside S and infinite primes.
- G_K $S := \text{Gal}(K_S/K)$

- \bullet S is the set of primes above p in K
- K_S is the maximal field extension of K unramified outside S and infinite primes.
- G_K $S := \text{Gal}(K_S/K)$

 $\bullet \ \chi : G_{K,S} \to \text{Gal}(K_\infty/K) \cong \mathbb{Z}_p$ is an element in $Hom(G_{K,S},\mathbb{Z}_p)$

- \bullet S is the set of primes above p in K
- K_S is the maximal field extension of K unramified outside S and infinite primes.
- G_K $S := \text{Gal}(K_S/K)$

 $\bullet \ \chi : G_{K,S} \to \text{Gal}(K_\infty/K) \cong \mathbb{Z}_p$ is an element in $\text{Hom}(G_{K,S},\mathbb{Z}_p)\cong H^1(G_{K,S},\mathbb{Z}_p)$

- \bullet S is the set of primes above p in K
- K_S is the maximal field extension of K unramified outside S and infinite primes.
- G_K $S := \text{Gal}(K_S/K)$

- $\bullet \ \chi : G_{K,S} \to \text{Gal}(K_\infty/K) \cong \mathbb{Z}_p$ is an element in $\text{Hom}(G_{K,S},\mathbb{Z}_p)\cong H^1(G_{K,S},\mathbb{Z}_p)$
- Let $\alpha \in K^*$, we can also view α as an element in cohomology group $H^1(G_{K,S},\mu_p)$ by kummer theory

 Ω

• Let
$$
K = \mathbb{Q}(\mu_p)
$$
.

 \blacksquare

э

- Let $K = \mathbb{Q}(\mu_n)$.
- $K=\mathbb{Q}(\mu_p)\subset\mathbb{Q}(\mu_{p^2})\subset\cdots\subset\mathbb{Q}(\mu_{p^l})\subset\cdots\subset\mathbb{Q}(\mu_{p^\infty})$ is a cyclotomic \mathbb{Z}_n extension.

- Let $K = \mathbb{Q}(\mu_n)$.
- $K=\mathbb{Q}(\mu_p)\subset\mathbb{Q}(\mu_{p^2})\subset\cdots\subset\mathbb{Q}(\mu_{p^l})\subset\cdots\subset\mathbb{Q}(\mu_{p^\infty})$ is a cyclotomic \mathbb{Z}_n extension.
- $\operatorname{Gal}(\mathbb{Q}(\mu_p)/\mathbb{Q})$ can act on $\operatorname{Cl}(\mathbb{Q}(\mu_{p^l}))[p^\infty].$

- Let $K = \mathbb{O}(\mu_n)$.
- $K=\mathbb{Q}(\mu_p)\subset\mathbb{Q}(\mu_{p^2})\subset\cdots\subset\mathbb{Q}(\mu_{p^l})\subset\cdots\subset\mathbb{Q}(\mu_{p^\infty})$ is a cyclotomic \mathbb{Z}_n extension.
- $\operatorname{Gal}(\mathbb{Q}(\mu_p)/\mathbb{Q})$ can act on $\operatorname{Cl}(\mathbb{Q}(\mu_{p^l}))[p^\infty].$
- Decompose $\text{Cl}(\mathbb{Q}(\mu_{p^l}))[p^\infty]=\oplus_i\varepsilon_i\text{Cl}(\mathbb{Q}(\mu_{p^l}))[p^\infty]$ as direct sum of eigenspaces with respect to the action of $Gal(\mathbb{Q}(\mu_n))$.

- Let $K = \mathbb{O}(\mu_n)$.
- $K=\mathbb{Q}(\mu_p)\subset\mathbb{Q}(\mu_{p^2})\subset\cdots\subset\mathbb{Q}(\mu_{p^l})\subset\cdots\subset\mathbb{Q}(\mu_{p^\infty})$ is a cyclotomic \mathbb{Z}_n extension.
- $\operatorname{Gal}(\mathbb{Q}(\mu_p)/\mathbb{Q})$ can act on $\operatorname{Cl}(\mathbb{Q}(\mu_{p^l}))[p^\infty].$
- Decompose $\text{Cl}(\mathbb{Q}(\mu_{p^l}))[p^\infty]=\oplus_i\varepsilon_i\text{Cl}(\mathbb{Q}(\mu_{p^l}))[p^\infty]$ as direct sum of eigenspaces with respect to the action of $Gal(\mathbb{Q}(\mu_n))$.
- By Iwasawa theory

$$
\#\varepsilon_i \text{Cl}(\mathbb{Q}(\mu_{p^l}))[p^{\infty}] = p^{\mu_i p^l + \lambda_i l + \nu_i} = p^{\lambda_i l + \nu_i}
$$

Theorem (McCallum-Sharifi[\[MS03\]](#page-75-1))

• Let $K = \mathbb{Q}(\mu_p)$

э

Theorem (McCallum-Sharifi[\[MS03\]](#page-75-1))

- Let $K = \mathbb{Q}(\mu_n)$
- $K=\mathbb{Q}(\mu_p)\subset\mathbb{Q}(\mu_{p^2})\subset\cdots\subset\mathbb{Q}(\mu_{p^l})\subset\cdots\subset\mathbb{Q}(\mu_{p^\infty})$ is a cyclotomic \mathbb{Z}_p extension

Theorem (McCallum-Sharifi[\[MS03\]](#page-75-1))

- Let $K = \mathbb{Q}(\mu_n)$
- $K=\mathbb{Q}(\mu_p)\subset\mathbb{Q}(\mu_{p^2})\subset\cdots\subset\mathbb{Q}(\mu_{p^l})\subset\cdots\subset\mathbb{Q}(\mu_{p^\infty})$ is a cyclotomic \mathbb{Z}_p extension
- Fix an odd $i > 1$. Under some conditions,

$$
\lambda_i \geq 2 \Longleftrightarrow \chi \cup \alpha_i = 0
$$

Where α_i is an element K^* constructed from $\varepsilon_i\mathrm{Cl}(K)[p]$

Theorem (Gold's criterion[\[Gol74\]](#page-75-2))

• Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.

э

Theorem (Gold's criterion[\[Gol74\]](#page-75-2))

- Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.
- Assume $p\nmid h_K=\#\mathrm{Cl}(K)$ and p splits in K ,i.e. $p\mathcal{O}_K=\mathfrak{P}_0\tilde{\mathfrak{P}}_0$

Theorem (Gold's criterion[\[Gol74\]](#page-75-2))

- Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.
- Assume $p\nmid h_K=\#\mathrm{Cl}(K)$ and p splits in K ,i.e. $p\mathcal{O}_K=\mathfrak{P}_0\tilde{\mathfrak{P}}_0$

Then

$$
\lambda \ge 2 \Longleftrightarrow \alpha^{p-1} \equiv 1 \mod \tilde{\mathfrak{P}}_0^2
$$

Here α is a generator of $\mathfrak{P}_0^{h_K}$

The same setting up as before, Gold tells us:

$$
\lambda \ge 2 \Longleftrightarrow \alpha^{p-1} \equiv 1 \mod \tilde{\mathfrak{P}}_0^2
$$

 \leftarrow \Box

重
The same setting up as before, Gold tells us:

$$
\lambda \ge 2 \Longleftrightarrow \alpha^{p-1} \equiv 1 \mod \tilde{\mathfrak{P}}_0^2
$$

By some work, easy to see:

$$
\alpha^{p-1} \equiv 1 \mod \tilde{\mathfrak{P}}_0^2 \Longleftrightarrow \log_p \alpha \equiv 0 \mod p^2
$$

Here log_p is the *p*-adic log.

∍

The same setting up as before, Gold tells us:

$$
\lambda \ge 2 \Longleftrightarrow \alpha^{p-1} \equiv 1 \mod \tilde{\mathfrak{P}}_0^2
$$

By some work, easy to see:

$$
\alpha^{p-1} \equiv 1 \mod \tilde{\mathfrak{P}}_0^2 \Longleftrightarrow \log_p \alpha \equiv 0 \mod p^2
$$

Here log_p is the *p*-adic log. If we work harder, by Poitou-Tate duality

$$
log_p \alpha \equiv 0 \mod p^2 \Longleftrightarrow \chi \cup \alpha = 0
$$

Theorem (McCallum-Sharifi[\[MS03\]](#page-75-0))

Let K be a cyclotomic field $\mathbb{Q}(\mu_p)$. For cyclotomic \mathbb{Z}_p extensions, under some conditions:

$$
\lambda_i \geq 2 \Longleftrightarrow \chi \cup \alpha_i = 0
$$

for odd $i > 1$.

Theorem (Gold's criterion[\[Gol74\]](#page-75-1))

Let K be an imaginary quadratic field. For cyclotomic \mathbb{Z}_n extensions, under some conditions:

$$
\lambda\geq 2\Longleftrightarrow \chi\cup\alpha=0
$$

Remark

Both theorems has the form " $\lambda \geq 2 \Longleftrightarrow \chi \cup \alpha = 0$ ", which motivates us to find the deep reason behind it.

[Introduction](#page-2-0)

Cup products and λ [invariants—two sample results](#page-18-0)

3 [Massey products](#page-39-0)

4 [Generalized Bockstein Map](#page-58-0)

[Main Results](#page-61-0)

€⊡

Þ

Slogan

Massey product is a generalization of cup products.

Given $\chi_1,\chi_2\in H^1(G,\mathbb{F}_p)\cong \mathrm{Hom}(G,\mathbb{F}_p)$, we can form two representations $G \to GL_2(\mathbb{F}_p)$:

$$
\rho_{\chi_1}(g)=\begin{pmatrix} 1&\chi_1(g)\\0&1\end{pmatrix}, \rho_{\chi_2}(g)=\begin{pmatrix} 1&\chi_2g\\0&1\end{pmatrix}
$$

Slogan

Massey product is a generalization of cup products.

Given $\chi_1,\chi_2\in H^1(G,\mathbb{F}_p)\cong \mathrm{Hom}(G,\mathbb{F}_p)$, we can form two representations $G \to GL_2(\mathbb{F}_p)$:

$$
\rho_{\chi_1}(g) = \begin{pmatrix} 1 & \chi_1(g) \\ 0 & 1 \end{pmatrix}, \rho_{\chi_2}(g) = \begin{pmatrix} 1 & \chi_2 g \\ 0 & 1 \end{pmatrix}
$$

• Try to glue the two representations together:

$$
\begin{pmatrix} 1 & \chi_1 & * \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}
$$

Slogan

Massey product is a generalization of cup products.

Given $\chi_1,\chi_2\in H^1(G,\mathbb{F}_p)\cong \mathrm{Hom}(G,\mathbb{F}_p)$, we can form two representations $G \to GL_2(\mathbb{F}_n)$:

$$
\rho_{\chi_1}(g) = \begin{pmatrix} 1 & \chi_1(g) \\ 0 & 1 \end{pmatrix}, \rho_{\chi_2}(g) = \begin{pmatrix} 1 & \chi_2 g \\ 0 & 1 \end{pmatrix}
$$

• Try to glue the two representations together:

$$
\begin{pmatrix} 1 & \chi_1 & * \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}
$$

We want to fill $*$ spot a cochain $\phi \in \mathcal{C}^1(G,\mathbb{F}_p)$ such that the above is a representation. Ω

We want to fill $*$ spot a cochain $\phi \in \mathcal{C}^1(G,\mathbb{F}_p)$ such that the above is a representation.

э

We want to fill $*$ spot a cochain $\phi \in \mathcal{C}^1(G,\mathbb{F}_p)$ such that the above is a representation.

\bullet

$$
\begin{pmatrix}\n1 & \chi_1(\sigma) & \phi(\sigma) \\
0 & 1 & \chi_2(\sigma) \\
0 & 0 & 1\n\end{pmatrix} * \begin{pmatrix}\n1 & \chi_1(\tau) & \phi(\tau) \\
0 & 1 & \chi_2(\tau) \\
0 & 0 & 1\n\end{pmatrix} = \begin{pmatrix}\n1 & \chi_1(\sigma\tau) & \phi(\sigma\tau) \\
0 & 1 & \chi_2(\sigma\tau) \\
0 & 0 & 1\n\end{pmatrix}
$$

for any $\sigma, \tau \in G$.

Þ

We want to fill $*$ spot a cochain $\phi \in \mathcal{C}^1(G,\mathbb{F}_p)$ such that the above is a representation.

\bullet

 \bullet

$$
\begin{pmatrix} 1 & \chi_1(\sigma) & \phi(\sigma) \\ 0 & 1 & \chi_2(\sigma) \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} 1 & \chi_1(\tau) & \phi(\tau) \\ 0 & 1 & \chi_2(\tau) \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \chi_1(\sigma\tau) & \phi(\sigma\tau) \\ 0 & 1 & \chi_2(\sigma\tau) \\ 0 & 0 & 1 \end{pmatrix}
$$

for any $\sigma, \tau \in G$.

 $\chi_1(\sigma)\chi_2(\tau) = \phi(\sigma\tau) - \chi_1(\sigma) - \chi_2(\tau) = d\phi(\sigma,\tau)$

We want to fill $*$ spot a cochain $\phi \in \mathcal{C}^1(G,\mathbb{F}_p)$ such that the above is a representation.

\bullet

$$
\begin{pmatrix} 1 & \chi_1(\sigma) & \phi(\sigma) \\ 0 & 1 & \chi_2(\sigma) \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} 1 & \chi_1(\tau) & \phi(\tau) \\ 0 & 1 & \chi_2(\tau) \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \chi_1(\sigma\tau) & \phi(\sigma\tau) \\ 0 & 1 & \chi_2(\sigma\tau) \\ 0 & 0 & 1 \end{pmatrix}
$$

for any $\sigma, \tau \in G$.

 \bullet

$$
\chi_1(\sigma)\chi_2(\tau) = \phi(\sigma\tau) - \chi_1(\sigma) - \chi_2(\tau) = d\phi(\sigma, \tau)
$$

We can fill $*$ spot a cochain $\phi\in\mathcal{C}^1(G,\mathbb{F}_p)$ s.t. the above is a representation $\Longleftrightarrow \chi_1\cup\chi_2 = -d\phi$ in $\mathcal{C}(G,\mathbb{F}_p)\Longleftrightarrow \chi_1\cup\chi_2 = 0$ in $H^2(G,\mathbb{F}_p).$

We can fill $*$ spot a cochain $\phi\in\mathcal{C}^1(G,\mathbb{F}_p)$ s.t. the above is a representation $\Longleftrightarrow \chi_1\cup\chi_2 = -d\phi$ in $\mathcal{C}(G,\mathbb{F}_p)\Longleftrightarrow \chi_1\cup\chi_2 = 0$ in $H^2(G,\mathbb{F}_p).$

э

- We can fill $*$ spot a cochain $\phi\in\mathcal{C}^1(G,\mathbb{F}_p)$ s.t. the above is a representation $\Longleftrightarrow \chi_1\cup\chi_2 = -d\phi$ in $\mathcal{C}(G,\mathbb{F}_p)\Longleftrightarrow \chi_1\cup\chi_2 = 0$ in $H^2(G,\mathbb{F}_p).$
- Cup product $\chi_1 \cup \chi_2$ is the obstruction for us to glue.
- We can fill $*$ spot a cochain $\phi\in\mathcal{C}^1(G,\mathbb{F}_p)$ s.t. the above is a representation $\Longleftrightarrow \chi_1\cup\chi_2 = -d\phi$ in $\mathcal{C}(G,\mathbb{F}_p)\Longleftrightarrow \chi_1\cup\chi_2 = 0$ in $H^2(G,\mathbb{F}_p).$
- Cup product $\chi_1 \cup \chi_2$ is the obstruction for us to glue.
- Generally if we have a bunch of representations derived from elements in $H^1(G,\mathbb{F}_p)$ and they are compatible in a certain way, Massey products are the obstruction for us to glue them.

3-fold Massey products

Generally if we have a bunch of representations derived from elements in $H^1(G,\mathbb{F}_p)$ and they are compatible in a certain way, Massey products are the obstruction for us to glue them.

3-fold Massey products

- Generally if we have a bunch of representations derived from elements in $H^1(G,\mathbb{F}_p)$ and they are compatible in a certain way, Massey products are the obstruction for us to glue them.
- Given two 3-dimensional representations $G \to GL_3(\mathbb{F}_n)$

$$
\begin{pmatrix} 1 & \chi_1 & \phi_{1,2} \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & \chi_2 & \phi_{2,3} \\ 0 & 1 & \chi_3 \\ 0 & 0 & 1 \end{pmatrix}
$$

3-fold Massey products

- Generally if we have a bunch of representations derived from elements in $H^1(G,\mathbb{F}_p)$ and they are compatible in a certain way, Massey products are the obstruction for us to glue them.
- Given two 3-dimensional representations $G \to GL_3(\mathbb{F}_n)$

$$
\begin{pmatrix} 1 & \chi_1 & \phi_{1,2} \\ 0 & 1 & \chi_2 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & \chi_2 & \phi_{2,3} \\ 0 & 1 & \chi_3 \\ 0 & 0 & 1 \end{pmatrix}
$$

• We want to glue them together:

$$
\begin{pmatrix}\n1 & \chi_1 & \phi_{1,2} & * \\
0 & 1 & \chi_2 & \phi_{2,3} \\
0 & 0 & 1 & \chi_3 \\
0 & 0 & 0 & 1\n\end{pmatrix}
$$

$$
\begin{pmatrix}\n1 & \chi_1 & \phi_{1,2} & * \\
0 & 1 & \chi_2 & \phi_{2,3} \\
0 & 0 & 1 & \chi_3 \\
0 & 0 & 0 & 1\n\end{pmatrix}
$$

 \leftarrow \Box

重

$$
\begin{pmatrix}\n1 & \chi_1 & \phi_{1,2} & * \\
0 & 1 & \chi_2 & \phi_{2,3} \\
0 & 0 & 1 & \chi_3 \\
0 & 0 & 0 & 1\n\end{pmatrix}
$$

 $\chi_1\cup\phi_{2,3}+\phi_{1,2}\cup\chi_3\in H^2(G,\mathbb{F}_p)$ is the obstruction to glue them.

$$
\begin{pmatrix}\n1 & \chi_1 & \phi_{1,2} & * \\
0 & 1 & \chi_2 & \phi_{2,3} \\
0 & 0 & 1 & \chi_3 \\
0 & 0 & 0 & 1\n\end{pmatrix}
$$

- $\chi_1\cup\phi_{2,3}+\phi_{1,2}\cup\chi_3\in H^2(G,\mathbb{F}_p)$ is the obstruction to glue them.
- The data $M = \{ \chi_1, \chi_2, \chi_3, \phi_{1,2}, \phi_{2,3} \}$ are called defining system.

$$
\begin{pmatrix}\n1 & \chi_1 & \phi_{1,2} & * \\
0 & 1 & \chi_2 & \phi_{2,3} \\
0 & 0 & 1 & \chi_3 \\
0 & 0 & 0 & 1\n\end{pmatrix}
$$

- $\chi_1\cup\phi_{2,3}+\phi_{1,2}\cup\chi_3\in H^2(G,\mathbb{F}_p)$ is the obstruction to glue them.
- The data $M = \{\chi_1, \chi_2, \chi_3, \phi_{1,2}, \phi_{2,3}\}\$ are called defining system.
- $\chi_1\cup\phi_{2,3}+\phi_{1,2}\cup\chi_3\in H^2(G,\mathbb{F}_p)$ is the Massey products of (χ_1, χ_2, chi_3) with respect to the defining system M.

A defining system is called proper defining system if it is of the following form:

$$
\begin{bmatrix}\n1 & \chi & \begin{pmatrix} \chi \\ 2 \end{pmatrix} & \begin{pmatrix} \chi \\ 3 \end{pmatrix} & \begin{pmatrix} \chi \\ 4 \end{pmatrix} & \cdots & * \\
0 & 1 & \chi & \begin{pmatrix} \chi \\ 2 \end{pmatrix} & \begin{pmatrix} \chi \\ 3 \end{pmatrix} & \cdots & \psi_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1 & \chi & \begin{pmatrix} \chi \\ 2 \end{pmatrix} & \psi_2 \\
0 & 0 & 0 & 0 & 1 & \chi & \psi_1 \\
0 & 0 & 0 & 0 & 0 & 1 & \psi_0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1\n\end{bmatrix}
$$

Here $\binom{n}{d}$ $\binom{n}{d} = \frac{n!}{d!(n-d)!}.$

Massey products and knots

There is an analogy between knots and primes in which $H^*(G_{K,S},\mathbb{F}_p)$ plays a similar role as the cohomology of knot complements. Massey products were first introduced by Massey when considering the following knots. Cup products (i.e. linking numbers in knot theory) of any two rings are all zero. Hence cup products fail to determine whether the following knots are trivial. However, the triple Massey product of three rings is not zero, which tells us three rings are linked in a nontrivial way.

[Introduction](#page-2-0)

Cup products and λ [invariants—two sample results](#page-18-0)

[Massey products](#page-39-0)

4 [Generalized Bockstein Map](#page-58-0)

[Main Results](#page-61-0)

 \leftarrow \Box

Þ

•
$$
G_{K,S}/G_{K_{\infty},S} \cong \text{Gal}(K_{\infty}/K) \cong \mathbb{Z}_p
$$

- Let σ be a topological generator of $G_{K,S}/G_{K_{\infty},S}$.
- Define the complete algebra $\Omega := \mathbb{F}_p[[G_{K,S}/G_{K_{\infty},S}]]$
- Let $I = $\sigma 1$ > be the augmentation ideal.$
- we have an exact sequence :

$$
0\to \mathbb{F}_p\cong I^n/I^{n+1}\to \Omega/I^{n+1}\to \Omega/I^n\to 0
$$

• After tensor with μ_p , it is still exact.

$$
0 \to \mu_p \cong \mu_p \otimes I^n / I^{n+1} \to \mu_p \otimes \Omega / I^{n+1} \to \mu_p \otimes \Omega / I^n \to 0
$$

• After tensor with μ_p , it is still exact.

$$
0 \to \mu_p \cong \mu_p \otimes I^n / I^{n+1} \to \mu_p \otimes \Omega / I^{n+1} \to \mu_p \otimes \Omega / I^n \to 0
$$

The connecting map $\Psi^{(n)}: H^1(G_{K,S}, \mu_p\otimes \Omega/I^n) \rightarrow$ $H^2(G_{K,S}, \mu_p\otimes I^n/I^{n+1})=H^2(G_{K,S}, \mu_p)$ is called the generalized Bockstein map.

[Introduction](#page-2-0)

Cup products and λ [invariants—two sample results](#page-18-0)

[Massey products](#page-39-0)

4 [Generalized Bockstein Map](#page-58-0)

[Main Results](#page-61-0)

 \leftarrow \Box

Þ

Theorem (Q.)

- Let $K \subset K_1 \subset K_2 \subset \cdots \subset K_\infty$ be a \mathbb{Z}_p extension of K
- Let S be the set of primes above p for K
- K_{∞}/K is totally ramified for all primes in S.
- Let $X_{cs} = \varprojlim \text{Cl}_{S}(K_l)$ and μ_{cs} , λ_{cs} be the Iwasawa invariant of $X_{cs}.$
- Assume X_{cs} has no torsion element and $H^2(G_{K,S},\mu_p)\cong \mathbb{F}_p.$

Then $\mu_{cs} = 0$ if and only if there exists k such that $\Psi^{(k)} \neq 0$ for some k. If $\mu_{cs} = 0$, then $\lambda_{cs} = min\{n | \Psi^{(n)} \neq 0\} - \#S + 1$

• Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.

э

- Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.
- Assume $p\nmid h_K=\#\mathrm{Cl}(K)$ and p splits in K ,i.e. $p\mathcal{O}_K=\mathfrak{P}_0\tilde{\mathfrak{P}}_0.$

- Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.
- Assume $p\nmid h_K=\#\mathrm{Cl}(K)$ and p splits in K ,i.e. $p\mathcal{O}_K=\mathfrak{P}_0\tilde{\mathfrak{P}}_0.$
- Assume $\lambda \geq n-1$

э

- \bullet Let K be an imaginary quadratic field and K_{∞}/K is the cyclotomic \mathbb{Z}_p extension.
- Assume $p\nmid h_K=\#\mathrm{Cl}(K)$ and p splits in K ,i.e. $p\mathcal{O}_K=\mathfrak{P}_0\tilde{\mathfrak{P}}_0.$
- Assume $\lambda \geq n-1$
- Then $\lambda \geq n \Leftrightarrow n$ -fold Massey product $(\chi, \chi, \dots \chi, \alpha) = 0$ with respect to a proper defining system. Here α is a generator of $\mathfrak{P}_0^{h_K}$

• Let $K = \mathbb{Q}(\mu_p)$

Peikai Qi (MSU) **IWasawa λ** [invaraints and Massey products](#page-0-0) November 6, 2023 30/32

 \leftarrow

造

- Let $K = \mathbb{Q}(\mu_n)$
- $K=\mathbb{Q}(\mu_p)\subset\mathbb{Q}(\mu_{p^2})\subset\cdots\subset\mathbb{Q}(\mu_{p^l})\subset\cdots\subset\mathbb{Q}(\mu_{p^\infty})$ is a cyclotomic \mathbb{Z}_p extension

э

- Let $K = \mathbb{Q}(\mu_n)$
- $K=\mathbb{Q}(\mu_p)\subset\mathbb{Q}(\mu_{p^2})\subset\cdots\subset\mathbb{Q}(\mu_{p^l})\subset\cdots\subset\mathbb{Q}(\mu_{p^\infty})$ is a cyclotomic \mathbb{Z}_p extension
- Fix an odd $i > 1$. Under some conditions, assume $\lambda_i \geq n-1$. Then $\lambda_i \geq n \Leftrightarrow n$ -fold Massey product $\varepsilon_i(\chi, \chi, \dots \chi, \alpha_i) = 0$ with respect to a proper defining system, where α_i is an element K^* constructed from $\varepsilon_i\text{Cl}(K)[p]$

Idea of proof

Use Kummer theory to connect the size of class groups and cohomological groups.

$$
0 \to \mathcal{O}_{K,S}^*/(\mathcal{O}_{K,S}^*)^p \to H^1(G_{K,S}, \mu_p) \to \mathrm{Cl}_S(K)[p] \to 0
$$

$$
0 \to \mathrm{Cl}_S(K)/p \to H^2(G_{K,S}, \mu_p) \to Br(\mathcal{O}_K[1/p])[p] \to 0
$$

 -111

э
Use Kummer theory to connect the size of class groups and cohomological groups.

$$
0 \to \mathcal{O}_{K,S}^*/(\mathcal{O}_{K,S}^*)^p \to H^1(G_{K,S}, \mu_p) \to \mathrm{Cl}_S(K)[p] \to 0
$$

$$
0 \to \mathrm{Cl}_S(K)/p \to H^2(G_{K,S}, \mu_p) \to Br(\mathcal{O}_K[1/p])[p] \to 0
$$

• The size of cohomological groups is controlled by generalized Bockstein map [\[LLS](#page-75-0)+23].

$$
\frac{I^{n}H_{\mathrm{Iw}}^{2}(G_{K_{\infty},S},\mu_{p})}{I^{n+1}H_{\mathrm{Iw}}^{2}(G_{K_{\infty},S},\mu_{p})} \cong \frac{H^{2}(G_{K,S},\mu_{p}) \otimes I^{n}/I^{n+1}}{\mathrm{Im}\,\Psi^{(n)}}
$$

here $\Psi^{(n)}$ is the generalized Bockstein map.

Use Kummer theory to connect the size of class groups and cohomological groups.

$$
0 \to \mathcal{O}_{K,S}^*/(\mathcal{O}_{K,S}^*)^p \to H^1(G_{K,S}, \mu_p) \to \mathrm{Cl}_S(K)[p] \to 0
$$

$$
0 \to \mathrm{Cl}_S(K)/p \to H^2(G_{K,S}, \mu_p) \to Br(\mathcal{O}_K[1/p])[p] \to 0
$$

• The size of cohomological groups is controlled by generalized Bockstein map [\[LLS](#page-75-0)+23].

$$
\frac{I^{n}H_{\mathrm{Iw}}^{2}(G_{K_{\infty},S},\mu_{p})}{I^{n+1}H_{\mathrm{Iw}}^{2}(G_{K_{\infty},S},\mu_{p})} \cong \frac{H^{2}(G_{K,S},\mu_{p}) \otimes I^{n}/I^{n+1}}{\mathrm{Im}\,\Psi^{(n)}}
$$

here $\Psi^{(n)}$ is the generalized Bockstein map.

Under some conditions, the image of generalized Bockstein map is spanned by Massey products [LLS ⁺23].

THANK YOU!

 \sim

4 D F ∢母 重

Э×

- Robert Gold, The nontriviality of certain Z_1 -extensions, J. Number Theory 6 (1974), 369–373. MR 369316
- Yeuk Hay Joshua Lam, Yuan Liu, Romyar Sharifi, Preston Wake, and Jiuya Wang, Generalized Bockstein maps and Massey products, Forum Math. Sigma 11 (2023), Paper No. e5, 41. MR 4537772
- William G. McCallum and Romvar T. Sharifi, A cup product in the Galois cohomology of number fields, Duke Math. J. 120 (2003), no. 2, 269–310. MR 2019977
- Lawrence C. Washington, Introduction to cyclotomic fields, second ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575